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Time Domain Approach to identify the System 
Properties of a Couple Structure 

Nagib Mehfuz, Abu Shaid Sujon 

 

Abstract— Principle method is commonly used in a time domain to identify the system properties of a vibrating 
source. The source is coupled to a receiving structure with a resilient mount. To solve an inverse problem it is 
an alternative to the existing frequency domain. Free mobility and free velocity of the source and receiver 
structure are determined by Least Mean Square (LMS) algorithm. In this paper, a next ended study of this time-
domain approach has been introduced. By using different degrees of freedom of the connectors and changing 
some of the parameters like spring constant, isotropic loss factor, and damping coefficient the accuracy of the 
method is observed. The results suggested that in one degree and two degrees the free mobilities of the 
sending and receiving points can be recreated almost accurately as before. And among different parameters, 
the spring constant and isotropic loss factor has the most effect on the results. 

Index Terms— time domain, free mobilities, free velocity, LMS-algorithm, degree of freedom. 

——————————      —————————— 

1 INTRODUCTION                                                                     

oupled structures are widely used in the modern era 
mostly to transmit power from one part to another of a 
structure. For example coupling in gear, the train allows 

the power to be transmitted from engine to wheel to drive 
the vehicle [1]. To ensure desired power transmission, 
identifying the system properties of the coupled structures 
are very important. But identifying the system properties of 
coupled structures is a bit complicated. Generally, to identi-
fy any system or force acting on a structure, free velocities 
and free mobilities of the structure are required. For cou-
pling structure, free velocities and free mobilities at the 
connectors between the excitation and receiving structure 
should be calculated. It requires the decoupling of both 
structures. In practice, decoupling sometimes becomes 
very complicated for complex structures. Properties of the 
connectors might change while decoupling. So measuring 
system properties without decoupling the structure are 
necessary.  
 
Few approaches can calculate the system properties with-
out decoupling the structure. Among them, the Principal 
Method (PM) is the most common [1]. It is an inverse ap-
proach where the response of the system is known and 
with the help of the model, the unknown excitation on the 
system can be calculated [2]. Free velocity and free mobili-
ty are calculated in the frequency domain. Like most other 
inverse approaches, this method is also very sensitive to 
measurement imperfections. So, the time-domain approach 
is proposed by Kropp and Peviç [3] that is combined with  
 
. 

———————————————— 

   Nagib Mehfuz is currently workings as a Lecturer at Mechanical and Pro-
duction Engineering Department in Islamic University of Technology, Gazi-
pur, Bangladesh. E-mail: nagibmehfuz@iut-dhaka.edu 

  Abu Shaid Sujon is currently workings as a Lecturer at Mechanical and 
Production Engineering Department in Islamic University of Tech-
nolgy,Gazipur, Bangladesh E-mail: sujonmce@iut-dhaka.edu 

 

the PM method. In this paper, a similar approach is fol-
lowed to make the process more robust concerning the 
’measurement noise’ 
 
In the time-domain approach, the frequency response of 
the system is converted into an impulse response. And ra-
ther than solving the problem by the inverse matrix method 
in the frequency domain, it solves the response in the time 
domain using an algorithm. Among different algorithms, the 
Least Mean Square (LMS) algorithm is used in this method. 
It is widely used for adaptive filter design and system identi-
fication in the field of active noise control. The main ad-
vantage of the LMS algorithm is that the effect of noise dur-
ing the measurement is ignorable [4][5][6]. The algorithm is 
easy to implement. The application of the LMS algorithm in 
the field of structure-borne sound for the identification of 
forces on structures was introduced by Kropp and Larsson 
[7]. 
 
This coupled structure is attached by an elastic joint. It is 
assumed that the mounts between the two structures are 
massless [8]. According to this assumption, coupling forces 
become identical on both sides of the coupling mounts. In 
the previous work of Kropp and Peviç [3] it is shown that 
this assumption in many practical cases is acceptable. This 
method can potentially produce good results. The function-
ing of this method was shown for two beams, coupled with 
a mount. 

 
Figure 1 the inverse problem 

 
In this paper, the method section describes the theory of 

C 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research Volume 11, Issue 3, March-2020                                                                                                       244 

ISSN 2229-5518  

 

IJSER © 2020 

http://www.ijser.org  

the LMS algorithm and different parameters and how the 
PM method is combined with the time-domain approach. In 
the results and discussion section, different cases for the 
2nd DOF of free mobility and error are presented. 
 
2. Method 
2.1. The Least Mean Square (LMS) Algorithm 
.  
The LMS algorithm is frequently used for designing adap-
tive filters and in the field of active noise control. In this 
case, the LMS algorithm is used to identify the unknown 
force in the coupling structure in the time domain [9]. Figure 
2 shows a typical design condition where ad is the output of 
an unknown system h0. By using a Finite Impulse Re-
sponse (FIR) filter h, having a length of I the output can be 
reconstructed. The error e of both outputs can be calculat-
ed by the expression below. 

                             (1)                                                                                                              

Where x is the observed input into the system. The filter 
and the input are written in vector form as. 

                                               (2)                                                                                                      

Here the transpose of the filter h is taken. 
and 

 

To minimize the mean value of the quadratic error the LMS 
algorithm is used. 

                       (3) 

 By taking the derivative with respect to the filter coeffi-
cients hi the optimal filter can be found. It is known as Wie-
ner filter. 

                          (4)                                                                                           
In equation 3 is quadratic with respect to the filter coeffi-
cients and to the values of the input signal. In the begin-
ning, one can follow the steepest gradient but this process 
will end up to a point of a global minimum of error [10]. 
From this, an iterative method can be formulated for calcu-
lating the filter coefficients by expressing a set of new (up-
dated) coefficients hi (new) as 

 
Figure 2 Block Diagram of the filter design according to 
LMS algorithm 
 
 

                                  (5) 
 

Where α is a weighting factor, determining the step size in 
the iteration process. The gradient is expressed as ensem-
ble average which is not easy to calculate. So the method 
of Widrow and Hoff [11] is used to solve this problem. It 
estimates the gradient from the instantaneous value of the 
gradient for each time step n. using instantaneous gradient 
for each time will in average adjust the coefficients hi in a 
way that reduces the mean square error. The expression is 
written in vector form below. 
 

                                   (6)                                                                                             

 
This formulation of the LMS algorithm will create a filter, 
which converges towards the Wiener filter solution. For the 
convergence coefficient, one finds as a ‘rule of thumb’ that 
it has to fulfill the following condition in order to achieve 
convergence [12]. 

                                                   (7)                                                                                                              
Due to the presence of noise, there might be some error in 
each time gradient but because of the iteration process, the 
averaged gradient will still head towards the global mini-
mum [8]. That makes the LMS algorithm robust in the pres-
ence of noise. 
 
A relative mean error is defined as 

                                                    (8)                                                                                                             
 
2.2. Two Degree of Freedom System 

Two degrees of freedom system required two independ-
ent parameters to describe their motions, i.e. displacement 
and bending angle. In this paper, this system is represented 
by two beams coupled with an elastic mount. Where excita-
tion and response of the beams have two independent pa-
rameters. It is considered that 1st DOF excitation is a force 
in the y-direction (perpendicular to the beam) and 2nd DOF 
excitation is the moment. Similarly, the 1st DOF of re-
sponse is the velocity in the y-direction and 2nd DOF is 
taken angular velocity in the Z direction. 

 
 

In the figure 3, there are two beams: sending beam and 
receiving beam. Sending beam only represent point 1 and 
receiving beam only represents point 
2.

 
Figure 3 Two beam and spring when force is applied in 
point 1 

 
To understand the two-dimensional phenomenon, the 
whole system is divided into four cases and for each case, 
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there are two possibilities. Either the excitation is applied in 
point 1 or point 2. But the response always is taken on both 
points. For example, in 1st DOF, the unknown force applied 
to point 1 and the response is taken both in point 1 and 2 
as velocity or the force is applied to point 2 and the re-
sponse is taken in point 1 and 2 as velocity. In 2nd DOF, 
instead of unknown force, an unknown moment is applied 
as the excitation and the angular velocity is taken as the 
response. 

 
For each case, there are four velocities. In total for four 
cases, there are 16 velocities. The new variables were de-
fined as Vsnm and Vrnm where, n=1, 2 and m=1... 4. For the 
velocities describing the coupled structures, the first index 
concerns the receiving point the second index indicates the 
excitation case. 
n=1: refers to sending beam n=2: refers to receiving Beam 
m=1: excitation on the sending structure (point 1) in DOF 1-
force 
m=2: excitation on the sending structure (point 1) in DOF 2-
moment 
m=3: excitation on the receiving structure (point 2) in DOF 
1-force 
m=4: excitation on the receiving structure (point 2) in DOF 
2-moment 
 
Again, for each case, two free mobilities can be calculated. 
One for the sending beam in point 1 and another is the re-
ceiving beam in point 2. In total, for four cases eight free 
mobilities were found. Ysab, Yrab where’s’ denoted the send-
ing beam, ’r’ denoted receiving beam. Then, the first index 
’a’ determines the DOF of the excitation, the second index 
’b’ indicates the DOF of the response. a=1: 1st degree of 
excitation a=2: 2nd degree of excitation b=1: 1st degree of 
response b=2: 2nd degree of response. Z is the impedance 
of the mounting. 
Ys11, Ys12, Ys21, Ys22 and Yr11, Yr12, Yr21, Yr22 are the four 
sending free mobilities and four receiving free mobilities are 
needed for describing the whole structure. There are also 
eight unknowns (ZYs11, ZYs12, ZYs2, ZYs22 and ZYr11, ZYr12, 
ZYr21, ZYr22) due to the unknown coupling forces. 
 
In total, there are sixteen unknowns to deal with, but the 
equation system can be easily divided into successive 
steps where first the terms related to the coupling forces 
are calculated and then the free mobilities as it was shown 
in the previous section. 
 
For each case, force is motioned either Fsp or Frp where ‘s’ 
denoted the sending beam,’r’ denoted receiving beam, p=1 
means the 1st degree of freedom or p=2 for the 2nd degree 

of freedom. Coupling forces are denoted by Fc;sq and Fc;rq. 
Where‘s’ denoted the sending beam, ‘r’ denoted receiving 
beam, q=1 means the 1st degree of freedom or q=2 for the 
2nd degree of freedom. 
 
The equations for the four cases are mentioned below and 
solved by a network of filter processes to get the free mo-
bilities that are desired. 
 
2.2.1. Case 1 
In case 1, as stated in table 1 for each excitation response 
is taken into two points. 1st DOF excitation in point 1 leads 
to three equations below. 
 
 Fs1Ys11+Fc;s1Ys11=vs11                                                        (9)                                                                                                            
 Fc;s1Yr11=vr11                                                                    (10)                                                                                                                   
 Fc;s1=-Z(vs11+vr11)                                                            (11)                                                                                                                
 
For the excitation in the receiving structure at point 2, the 
equations can be constructed as follows 
 
Fr1Yr11+Fc;r1Yr11=vr13                                                         (12)                                                                                                       
 Fc;r1Ys11=vs13                                                                   (13)                                                                                                                     
 Fc;r1=-Z(vr13+vs13)                                                            (14) 
                                                                                                           
From the equations 9, 11, 13 and 14 two equations can be 
determined. 

-ZYs11(vr13+vs13)=vs13                                                        (15)                                                                                                            
Fs1Ys11-ZYs11(vs11+vr11)=vs11                                              (16)                                                                                                
 
By solving these two equations 15 and 16 by filter network 
system the free mobility of the sending structure Ys11 for 1st 
DOF of excitation and response can be determined. First, 
the equation 15 is represented by the filter below. Where 
(vr13 + vs13) is the input of the filter. vs13 is the desired output 
from the filter. As the input and output are known, the un-
known filter coefficient ZYs11 can be determined by using 
LMS algorithm where the optimal goal is to minimize the 
error er. 
 

 
Figure 4 Formation of equation as network of filter suita-
ble for the LMS algorithm for ZYs11 
 

 
Figure 5 Formation of equation as network of filter suita-
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ble for the LMS algorithm for Ys11 
 

 
Using the information Z Ys11, the free mobility Ys11 is calcu-
lated by forming another filter network mentioned below. 
The desired output is vs11 + ZYs11 (vs11 + vr11) and the input 
Fs1 is taken as one. So the unknown filter coefficient, which 
represents the free mobility Ys11 can be determined by LMS 
algorithm. 
Similarly, Yr11 can be determined by solving the equations9, 
10, 11 and 12. 
Other cases also follow the same procedure. So equations 
those are needed to identify the free mobility in sending 
beam point 1 are mentioned only for the rest of the cases. 
Then they are represented in a filter network diagram. Free 
mobility of the receiving beam at point 2 can also be calcu-
lated in a similar way. 
 
2.2.2. Case 2 
For the excitation in the sending structure, the equations 
can be constructed as follows 
 
Fs2Ys21+Fc;s2Ys21=vs12                                                      (17)                                                                                                  
 Fc;s2Yr21=vr12                                                                   (18)                                                                                                                           
 Fc;s2=-Z(vs12+vr12)                                                           (19)                                                                                                               
 
For the excitation in the receiving structure, the equations 
can be constructed as follows 
Fr2Yr21+Fc;r2Yr21=vr14                                                         (20)                                                                                                          
 Fc;r2Ys21=vs14                                                                   (21)                                                                                                                        
 Fc;r2=-Z(vr14+vs14)                                                            (22)                                                                                                                
 

 
Figure 6 Formation of equation as network of filters suit-
able for the LMS algorithm for Ys21 
 
From the equations 17, 19, 21 and 22 the free mobility of 
the sending structure Ys21 for 2nd DOF of excitation and1st 
DOF of response can be determined following the filter 
network mentioned above. 

-ZYs21(vr14+vs14)=vs14                                                        (23)                                                                                                          

Fs2Ys21-ZYs21(vs12+vr12)=vs12                                                                     (24)                                                                                                                                             
 
2.2.3. Case 3 
For the excitation in the sending structure, the equations 
can be constructed as follows 
Fs1Ys12+Fc;s1Ys12=vs21     (25)                                                                                                         
 Fc;s1Yr12=vr21         (26)                                                                                                                    
 Fc;s1=-Z(vs21+vr21)    (27)                                                                                                               

 
Figure 7 Formation of equation as network of filters suit-
able for the LMS algorithm for Ys12 
 
For the excitation in the receiving structure, the equations 
can be constructed as follows 
Fr1Yr12+Fc;r1Yr12=vr23                                               (28)                                                                                                           
 Fc;r1Ys12=vs23                                                           (29)                                                                                                                         
 Fc;r1=-Z(vr23+vs23)                                                   (30)                                                                                                                
From the equation 25,27, 29, and 30 the free mobility of the 
sending structure Ys12 for 1st DOF excitation and 2nd DOF 
response can be determined following the filter network 
mentioned above. 

-ZYs12(vr23+vs23)=vs23                                                        (31)                                                                                                        
Fs1Ys12-ZYs12(vs21+vr21)=vs21                                             (32)                                                                                             
 
2.2.4. Case 4 
For the excitation in the sending structure, the equations 
can be constructed as follows 
Fs2Ys22+Fc;s2Ys22=vs22                                                                                   (33)                                                                                                                                                              
 Fc;s2Yr22=vr22                                                                   (34)                                                                                                                       
 Fc;s2=-Z(vs22+vr22)                                                           (35)                                                                                                               
For the excitation in the receiving structure, the equations 
can be constructed as follows 
Fr2Yr22+Fc;r2Yr22=vr24                                                        (36)                                                                                                            
 Fc;r2Ys22=vs24                                                                  (37)                                                                                                                    
 Fc;r2=-Z(vr24+v214)                                                           (38)                                                                                                               
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Figure 8 Formation of equation as network of filters suit-
able for the LMS algorithm for Ys22 
 
From the equations33,35,37 and 38 the free mobility of the 
sending structure Ys22 for 2nd DOF of excitation and 2nd 
DOF of response can be determined following the filter 
network mentioned above. 

-ZYs22(vr24+vs24)=vs24                                                (39)                                                                                                        
Fs2Ys22-ZYs22(vs22+vr22)=vs22                                     (40)                                                                                               
 
1.3. Comsol Simulation for finding velocities 
In Comsol initially, 2D space dimension is selected. Then 
two types of physics are selected ’Beam (beam)’ and 
’Multibody Dynamics (mbd)’. ’Frequency Domain’ study has 
been done. Parameters are set as mentioned in table 2 and 
3.  
Table 2 

Parameters of the Beam Values 
 

Young’s Modulus 7200 P a 

Isotropic Loss Factor 0.4 

Density 2700 kg/m2 

Poison’s Ratio 0.34 

 
Table 3 

Parameters of the Connector 
 

Values 
 

Spring Constant 100 N/m 

Damping Coefficient 0.02 Ns/m 

 
The drawing of the coupled system is done in comsol. 
’Bezier Polygon’ is created which resemble the beams in 
the system. The upper one is considered as the sending 
beam and the lower one as receiving beam. The length of 
those beams is 0.5m and 0.7m respectively. Two beams 
are 0.1m apart. Two points are created on the both beams 
exactly in the same point which is 0.4m from the origin. And 
depending on the condition the force or the moment is 
added in the point 1 and point 2 respectively. To make the 
beams simply supported the prescribed displacement in the 

y-direction is taken as ’0’ at the two end of the beams. 
 

 
Figure 9 Two beams Geometry 
 
Material properties like Young’s Modulus, Isotropic Loss 
Factor, Poison’s Ratio and Density which are chosen as the 
close to Aluminum. The values are mention in table 2.The 
beam section damping is added as Loss factor model type 
and Isotropic loss factor value is taken 0.02. 
 
Under Multibody Dynamics spring-damper is added into the 
system. After spring constant and damping coefficient are 
set as 7, meshing is carried out. 
 
The study is performed within low to mid-range frequency 
(1-2000Hz). In result section, the data of velocity is taken 
for point 1 and point 2 for the 1st degree of freedom. For a 
higher degree of freedom, angular velocity data is also tak-
en as a text file format. 

 
Figure 10 Two beams after simulation in Comsol 

 
3. Results and Discussions 
 
3.1. Effect of different Spring Constant 
The spring constant is a very important parameter that af-
fects the free mobility of the coupled structure. Initially, the 
spring constant, k is taken 100Nm and the velocity of the 
structure is calculated due to the force applied. As the 
spring constant increases, the force being transmitted 
through the spring also increases. It increases the velocity 
of the structure. 
 
Finally, very high spring constant is used to see its effect on 
the structure. After a number of simulations, it is found that 
the deviation in free mobility from Comsol and LMS algo-
rithm is considerably large when the spring constant is 
above 5000 Nm. In 20000 Nm spring constant, the devia-
tion is very prominent. In this paper, the two spring con-
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stants are studied which are presented below. 
 
Table 4 

Different Spring Constant 
 

Values 
 

1st condition 20000 N/m 

2nd condition 50000 N/m 

 
 
To understand the effect of spring constant on free mobility, 
two extreme conditions are considered: One mobility of the 
sending beam for case 1 (section 2.2.1) where all the exci-
tations and responses are taken in 1st DOF and the other 
mobility of the sending beam for case 4 (section 2.2) where 
all the excitations and responses are taken in 2nd DOF. 

 
Figure 11 Free Mobility predicted from LMS Algorithm 
and Simulation and Error of the estimation 
 
For the first condition, at k=20000 Nm, the difference be-
tween both methods is up to 5 dB in lower frequencies (100 
Hz) found in figure 11. But for higher spring constant at 
k=50000 Nm the deviation is increased up to 10 dB in lower 
frequencies and even higher frequencies like 400 Hz and 
850 Hz some deviations occurred(figure 12). 

 
Figure 12 Free Mobility predicted from LMS Algorithm 
and Simulation and Error of the estimation 

 
Figure 13Free Mobility predicted from LMS Algorithm 
and Simulation and Error of the estimation 

 
Figure 14 Free Mobility predicted from LMS Algorithm 
and Simulation and Error of the estimation 
 
For the second condition at k=50000 Nm, the absolute er-
ror is around 10 dB in the pick frequencies (150 Hz, 450 
Hz, and 900 Hz ) in figure 13. And for higher spring con-
stant the error goes up to 20 dB that shown in the figure 14.  
For different cases, the same results are found. So it can 
be concluded that as the spring constant increases it is dif-
ficult to predict the free mobility from LMS and it deviated 
from the simulation data. By increasing the iteration steps 
the absolute error might be mitigated. 
 
 
 
3.2. Effect of different Isotropic loss factor 
The isotropic loss factor is a parameter that affects the ma-
terial damping. In this paper, it is the parameter of the 
beam. Material damping transforms the vibration energy of 
the structure into another form of energy such as heat. As 
the loss factor goes higher the vibration in the structure will 
be reduced that also reduced the velocity. Eventually, the 
amplitude of the free mobility will be decreased.  
Table 5 

Different Isotropic loss factor 
 

Values 
 

1st condition 0.06 

2nd condition 0.08 

3rd condition 0.1 

 
Here mobility of the sending beam for case 1 (section 
2.2.1) where all the excitations and responses are taken in 
1st DOF, is chosen to analyze the effect of different isotropic 
loss factors. Initially, the loss factor is chosen 0.06. When 
the isotropic loss factor is 0.06, in figure 15 shows that the 
absolute error in lower frequencies is 30 dB. Then the error 
is reduced and become less than 1 dB in higher frequen-
cies. At isotropic loss factor 0.08, in figure 16 shows the 
reduction of the absolute error in lower frequencies up to 
15 dB. 
 
Figure 17 shows the reduction of the absolute error in lower 
frequencies up to 10 dB at isotropic loss factor 0.1. 
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Figure 15Free Mobility predicted from LMS Algorithm 
and Simulation and Error of the estimation 

 
Figure 16 Free Mobility predicted from LMS Algorithm 
and Simulation and Error of the estimation 

 
Figure 17 Free Mobility predicted from LMS Algorithm 
and Simulation and Error of the estimation 
 
So it can be concluded that in higher isotropic loss factor 
the absolute error in lower frequencies reduced considera-
bly. For higher frequency, there is no significant effect. 
 
3.3. Effect of different Damping Coefficient 
Table 6 

Different Damping Coefficient 
 

Values 
 

1st condition 0.04 

2nd condition 0.06 

3rd condition 0.08 

3rd condition 1.00 

 
Damping coefficient is the parameter of the connector that 
might affect the results. Four different damping coefficients 
are applied here. And the excitation and response condi-
tions remain same the previous section. For 1st condition, 
0.04 damping coefficient is applied. Figure 18 shows the 
same pattern as before some deviation of absolute error in 
lower frequencies and not much error in higher frequen-
cies. For 2nd condition, the damping coefficient is applied 
0.06. For this, the absolute error is presented in figure 19. 
For 3rd condition, the damping coefficient is applied 

0.08.For this, the absolute error is presented in figure 20. 
For 4th condition, the damping coefficient is applied 0.1. 
For this, the absolute error is presented in figure 21. 
 

 
Figure 18 Free Mobility predicted from LMS Algorithm 
and Simulation and Error of the estimation 

 
Figure 19 Free Mobility predicted from LMS Algorithm 
and Simulation and Error of the estimation 

 
Figure 20 Free Mobility predicted from LMS Algorithm 
and Simulation and Error of the estimation 

 
Figure 21 Free Mobility predicted from LMS Algorithm 
and Simulation and Error of the estimation 
 
It is found that all the graphs show the almost same results. 
At the end, it can be concluded that due to very low damp-
ing coefficient there is not much effect on the results. 
 
4. Conclusion 
The LMS algorithm is a common and well-known tool in 
adaptive design filters. In this paper, the LMS algorithm is 
used in the time domain and combined with the frequency 
domain Principle Method to investigate the free mobilities 
of a coupled structure. Two beams coupled in one degree 
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of freedom and two beams coupled in two degrees of free-
dom by an elastic mount are the two cases mentioned 
here. In both cases, the LMS algorithm shows good results. 
Some important parameters of the structure and elastic 
mount that might affect the dynamic system of the struc-
tures are also investigated. Among them, structural damp-
ing parameter: isotropic loss factor and mounting parame-
ter: spring constant has the most effect. High loss factor 
and high spring constant increases the error between the 
simulation data and LMS prediction in low frequencies. The 
equation system is programmed as a filter network to iden-
tify the solution. The shortcoming of the method is a huge 
calculation time due to the iteration process. If the iteration 
process increases it can increase the calculation time up to 
a few hours. Another important issue for the LMS algorithm 
is the step size, Small step size gives more accurate re-
sults. If the step size is very small it might take a long time 
to calculate. So an optimal step size should be used to re-
duce the calculation time without affecting the accuracy of 
the results [13] [14].  
 
Further work can be done by increasing the number of 
DOF of the mounting. Investigate its effect in predicting free 
mobility using the LMS algorithm. In this paper, the classi-
cal LMS algorithm is used which can be improved to get a 
better prediction in the higher degree of freedom. For solv-
ing the equation system another approach was showed by 
Wolfgang and Peviç [3]. Direct solving with a symbolic 
toolbox, it might be interesting to analyze the effect of this 
different solving method. Using the LMS algorithm in struc-
ture-borne sound and system and source identification ra-
ther than the conventional inverse method is a quite new 
approach. System properties can be easily identified 
through this method. Due to the robustness of the solution, 
it can be a very efficient alternative to understanding the 
coupled structure without decoupling them. 
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